Тульский государственный педагогический университет им.Л.Н.Толстого Анисимов М.М. Физическая электроника |
||||||||
Предисловие глава 1 глава 2 глава 3 глава 4 глава 5 глава 6 Литература |
Глава 6. МАШИНЫ ПОСТОЯННОГО ТОКА.Как известно, при вращении рамки в постоянном магнитном поле, в ней возбуждается переменная ЭДС. Эта переменная ЭДС может быть преобразована в импульсную ЭДС в результате переключения концов рамки с помощью двух коллекторных пластин, представляющих собой два полукольца, в момент, когда ЭДС равна 0. (рис. 6.1) Даже при наличии двух взаимно перпендикулярных рамок и четырех коллекторных пластин, выходная ЭДС оказывается практически постоянной (рис.6.2). Таким образом, в машине постоянного тока, используемой как генератор, коллектор выполняет функцию выпрямителя. Машины постоянного тока обратимы, и их устройства одинаково как для двигателя, так и для генератора. Машина постоянного тока состоит из двух частей: неподвижной и подвижной, статора и якоря соответственно (рис.6.3). Статор - неподвижная часть машины, представляет собой цилиндрическую станину, к внутренней поверхности которой крепятся 2, 4 или более полюсов, состоящих из сердечника, полюсных наконечников и обмотки возбуждения. Подвижная часть, якорь, выполнена в виде цилиндрического пакета, состоящего из большого числа тонких пластин. В продольных пазах якоря размещена обмотка, состоящая из нескольких секций. На валу якоря располагается коллектор, представляющий собой цилиндр из диэлектрика, на котором расположены пластины коллектора, соединенные с секциями обмотки якоря. С внешней электрической схемой коллектор соединяется с помощью графитовых щеток, скользящих по поверхности коллекторных пластин. Щетки установлены так, что переключение секций обмотки якоря (коммутация) происходит в тот момент, когда секция обмотки находится в нейтральной зоне между полюсами. В этом случае, когда нагрузка генератора отсутствует, ЭДС, возбуждаемая в обмотке якоря, определяется соотношением:        (6.1)где С - конструктивный коэффициент, Ф - магнитный поток, n-число оборотов якоря. При разомкнутых выходных зажимах генератора ток в цепи якоря равен нулю. При этом магнитное поле якоря отсутствует, и генератор работает в «холостую». Двигатель, приводящий во вращение якорь генератора, преодолевает только момент трения, совершая минимальную механическую работу. При подключении электрической нагрузки в обмотке якоря и в нагрузке возникает ток, создающий вращающееся магнитное поле якоря, которое, взаимодействуя с неподвижным магнитным полем статора, приводит к появлению тормозного момента. Момент возрастает с ростом тока нагрузки. При этом мощность, выделяемая в нагрузке генератора, увеличивается (напряжение и ток возрастают), что приводит к увеличению механической мощности, развиваемой приводным двигателем. Суммарное магнитное поле, возникаемое при работе генератора под нагрузкой, оказывается уже не симметричным как в режиме холостого хода, а смещается по направлению вращения генератора или против направления вращения в двигателе. Это обусловлено тем, что появляется магнитное поле якоря, созданное током нагрузки. Подобное явление называют реакцией якоря. Наличие реакции якоря приводит к ухудшению коммутации и к повышенному искрению под щётками. Для устранения этого явления, щётки перемещают из геометрической нейтрали в другое положение, либо машина снабжается дополнительными полюсами и компенсационной обмоткой, включённой последовательно с основной обмоткой якоря. В этом случае компенсация реакции якоря автоматически устанавливается при любых нагрузках машины. Основным классификационным признаком машин постоянного тока является способ возбуждения главного магнитного поля, создаваемого током, протекающим через обмотку возбуждения. Все рабочие характеристики машин постоянного тока зависят от способа включения обмотки возбуждения по отношению к цепи якоря. Это включение может быть последовательным, параллельным, комбинированным, также эти цепи могут быть независимы друг от друга. 6.1. Генераторы с независимым возбуждением.В подобных генераторах обмотка возбуждения питается от отдельного источника, вследствие чего ток возбуждения не зависит от напряжения генератора, а следовательно, от условий нагрузки (рис.6.4). Это дает возможность в очень широких пределах менять магнитный поток, а следовательно, и ЭДС, возникающую на обмотке якоря. Зависимость ЭДС от тока возбуждения при постоянном числе оборотов называется характеристикой холостого хода (рис. 6.5). Наличие остаточной намагниченности системы возбуждения приводит к тому, что при отсутствии тока возбуждения, ЭДС возбуждения в якоре не равна 0, а равна остаточной ЭДС, Е0. С ростом тока возбуждения магнитное поле возрастает и приводит к магнитному насыщению системы возбуждения, вследствие чего, при значительных токах возбуждения ЭДС не возрастает. Вид этой характеристики аналогичен подобной характеристике синхронного генератора. Важной характеристикой генератора является внешняя зависимость напряжения U на выходе генератора от силы тока якоря (рис.6.6.А). Эта зависимость определяется соотношением:        (6.2) где Е - ЭДС якоря, Iн - ток нагрузки, Rя - сопротивление обмотки якоря и представляет собой прямую (рис. 6.6.Б пунктир). Однако, при значительных токах нагрузки появляется насыщение магнитной системы и возникает размагничивающее действие реакции якоря, что приводит к уменьшению суммарного магнитного потока, а следовательно ЭДС и выходного напряжения быстрее, чем по прямой линии. 6.2. Генераторы с параллельным возбуждением.У таких генераторов цепь обмотки возбуждения соединяется параллельно цепи якоря и часть тока потребляемого двигателем (примерно 1%) используется для питания обмотки возбуждения (рис.6.7). Обмотка возбуждения выполнена тонким проводом и содержит значительное количество витков. Самовозбуждение подобных генераторов возможно только лишь в том случае, если статор машины сохраняет остаточную намагниченность. Характеристика холостого хода у таких генераторов аналогична характеристике генераторов с независимым возбуждением (рис.6.5), а внешняя характеристика (рис.6.6.Б) проходит ниже, так как при увеличении тока нагрузки увеличивается падение напряжения на обмотке якоря, что приводит к уменьшению выходного напряжения, а следовательно, и тока возбуждения. Генераторы с параллельным возбуждением не боятся коротких замыканий и поэтому наиболее широко распространены. 6.3. Генераторы с последовательным возбуждением.Якорь у таких генераторах соединен последовательно с обмоткой возбуждения, поэтому ток нагрузки является током возбуждения и током якоря (рис.6.8).Сопротивление обмотки возбуждения должно быть соизмеримо с сопротивлением обмотки якоря, то есть мало (малое число витков толстого провода). Так как обмотка якоря соединена последовательно с обмоткой возбуждения, характеристика холостого хода у такого генератора отсутствует. Для внешней характеристики генератора характерно наличие максимума, связанное с тем, что при достижении значительных токов нагрузки магнитная система насыщается и магнитный поток уже не растет, а выходное напряжение начинает уменьшаться из-за увеличения падения напряжения на обмотке якоря. Такие генераторы используются очень редко. 6.4. Генераторы смешанного возбуждения.Такие генераторы имеют две обмотки возбуждения: одну, включенную параллельно обмотке якоря и имеющую значительное сопротивление, и вторую, включенную последовательно, со значительно меньшим сопротивлением (аналогично генераторам последовательного и смешанного соединения) (рис.6.9). Эти обмотки могут быть включены либо согласно, либо встречно. В генераторах с согласным включением обмоток выходное напряжение почти не меняется с изменением нагрузки (рис.6.10.А). Это происходит потому, что магнитный поток последовательной обмотки создается током нагрузки и при увеличении нагрузки возрастает, компенсируя влияние реакции якоря и увеличение падения напряжения внутри генератора. Генераторы со встречным включением обмоток имеют крутопадающую внешнюю характеристику (рис.6.10.Б). При увеличении тока нагрузки встречный магнитный поток последовательной обмотки размагничивает генератор, и выходное напряжение резко снижается. Наиболее часто подобные генераторы используются в качестве сварочных, т.к. для поддержания горения дуги требуются именно крутопадающие внешние характеристики.
6.5. Двигатели постоянного тока.Если машину постоянного тока включить в сеть постоянного тока, то в обмотках якоря и в обмотках возбуждения возникают токи. При этом система возбуждения создает постоянное магнитное поле, которое взаимодействует с полем якоря, и на каждый проводник обмотки якоря начинает действовать сила, которая стремится повернуть якорь. Появляется крутящий момент М, приводящий якорь во вращение. Помимо вращающего момента М, возникающего в результате взаимодействия магнитного поля якоря с магнитным полем обмотки возбуждения, на якорь двигателя действует ряд других моментов: момент холостого хода Мо, связанный с механическими потерями; тормозной момент М1 , создаваемый механизмом, приводимым во вращение двигателем; динамический момент Мдин сил инерции, возникающий при изменении скорости вращения якоря. Динамический момент Мдин пропорционален моменту инерции вращающихся частей J и угловому ускорению:        (6.3) Чем быстрее меняется скорость двигателя, тем больше динамический момент. В установившемся режиме, когда скорость вращения постоянна, динамический момент равен нулю. Моменты двигателя связаны уравнением, которое носит название уравнения моментов: (6.4) В установившемся режиме вращающий и тормозной моменты взаимно уравновешены, и якорь двигателя вращается с постоянной скоростью. В зависимости от способа подключения обмотки возбуждения к якорю двигателя, различают двигатели независимого, параллельного, последовательного и смешанного возбуждения. 6.6. Двигатели с независимым и параллельным подключением.Схема включения двигателя приведена на рис.6.11. При подключении обмотки возбуждения подобного двигателя к отдельному источнику создается независимое возбуждение. При включении двигателя постоянного тока в сеть, в момент пуска ток якоря определяется соотношением: (6.5) где U - напряжение сети, Rя - сопротивление обмотки якоря, Iя -ток якоря. Затем якорь под действием крутящего момента приходит во вращение, и в обмотке якоря возбуждается ЭДС самоиндукции        (6.6) где с - конструктивный коэффициент, n - число оборотов, Ф - магнитный поток системы возбуждения. Полярность ЭДС самоиндукции противоположна полярности напряжения сети (противо- ЭДС), вследствие чего с ростом частоты вращения якоря значительно уменьшается ток, протекающий в цепи якоря. (6.7) Следовательно, пусковой ток оказывается значительно больше номинального (в 10...30 раз), и очень часто в цепь якоря включается реостат, величина которого позволяет уменьшить пусковой ток до значений .1...1.5 Iном. Преобразуя соотношение (6.7) к виду: (6.8) получаем, что приложенное напряжение U уравновешивается суммой противо- ЭДС Е и падением напряжения на обмотке якоря RяIя. Крутящий момент двигателя независимого и параллельного возбуждения определяется соотношением: (6.9) С увеличением тормозного момента, создаваемого механической нагрузкой двигателя, механическая мощность возрастает. Число оборотов якоря уменьшается, что приводит к уменьшению противо-ЭДС и росту тока, потребляемого двигателем, а, следовательно, к увеличению крутящего момента и возрастанию электрической мощности, потребляемой двигателем от сети. Зависимость установившейся скорости вращения от тормозного момента двигателя при постоянном напряжении питания цепей якоря и возбуждения называется механической характеристикой двигателя. Механическая характеристика рассматриваемых двигателей изображена на рис.6.12. Как видно из графика, скорость вращения двигателей при изменении тормозного момента в широких пределах (от 0 до номинального) изменяется незначительно. Это означает, что двигатели независимого и параллельного возбуждения имеют жёсткую механическую характеристику. Зависимость скорости вращения n, тока якоря Iя, вращающего момента М и коэффициента полезного действия h от полезной мощности Р2 на валу двигателя при постоянном напряжении цепей якоря и возбуждения (IB=const) называется рабочими характеристиками двигателя. Рабочие характеристики двигателей параллельного и независимого возбуждения представлены на рис.6.13. Так как с увеличением полезной мощности вращающий момент возрастает, скорость вращения двигателя уменьшается. С увеличением вращающего момента увеличивается пропорциональный ему ток якоря. Моменты М и М1 oтличаются на величину момента холостого хода, М0. Наибольший к.п.д. достигается при нагрузках, несколько меньших номинальной. Механическая и рабочая характеристики двигателя независимого возбуждения идентичны аналогичным характеристикам двигателя параллельного возбуждения. Так как противо- ЭДС зависит от скорости вращения якоря и равна (6.10) то приложенное напряжение U определится соотношением        (6.11) Отсюда находим выражение скорости вращения двигателя:        (6.12) Полученная формула позволяет решить задачу регулирования скорости вращения двигателя. Необходимо отметить, что для уменьшения потерь мощности сопротивление обмотки якоря Rя стремятся сделать по возможности малым (в реальных машинах оно составляет сотые или тысячные доли ома), В соответствии с этим и падение напряжения на активном сопротивлении якоря IяRя невелико по сравнению с напряжением сети. Поэтому в формуле (6.12) членом IяRя можно пренебречь. Тогда        (6.13) Отсюда видно, что существует два способа плавного изменения скорости вращения двигателя в широких пределах: 1. изменение напряжения U, подведенного к якорю двигателя; 2. изменение магнитного потока возбуждения Ф (тока возбуждения IB). На рис.6.14 показано возможное включение регулировочных реостатов в схему двигателя. При увеличении сопротивления R2 , при постоянном напряжении сети U, уменьшается напряжение, подведенное к якорю, и следовательно, скорость вращения двигателя. С увеличением сопротивления R1 уменьшается ток возбуждения и магнитный поток возбуждения, а, следовательно, увеличивается скорость вращения двигателя. Второй способ регулирования скорости вращения двигателя предпочтительнее, так как он связан с меньшими потерями мощности: ток возбуждения в десятки раз меньше тока якоря, а потери пропорциональны квадрату тока. Однако при необходимости изменять скорость вращения двигателя в очень широких пределах одновременно используют оба способа. Возможность плавного и экономичного регулирования скорости вращения в широких пределах является важнейшим достоинством двигателей постоянного тока. Соотношение (6.13) определяющее скорость вращения двигателя показывает, что по мере уменьшения магнитного потока скорость неограниченно возрастает. С этой точки зрения опасен обрыв цепи возбуждения двигателя, при котором магнитный поток резко уменьшается до величины потока остаточного намагничивания, а двигатель идет "вразнос". Особенно вероятен режим "разноса" у ненагруженного двигателя. Режим "разноса" является аварийным: центробежные силы деформируют обмотку якоря, якорь заклинивается, а в некоторых случаях и разрушается. У нагруженного двигателя увеличение скорости вращения происходит не столь резко, так как уменьшение магнитного потока при постоянном моменте вращения приводит к такому увеличению тока якоря, при котором произведением IяRя уже нельзя пренебрегать. Но и в этом случае обрыв цепи возбуждения может быть опасным. 6.7. Двигатели с последовательным и смешанным возбуждением.Схема двигателя постоянного тока последовательного возбуждения изображена на рисунке 6.15. Обмотка возбуждения двигателя включена последовательно с якорем, поэтому магнитный поток двигателя изменяется вместе с изменением нагрузки. Так как ток, потребляемый двигателем, достаточно велик, обмотка возбуждения имеет небольшое число витков. Из- за последовательного включения обмоток якоря и возбуждения (рис.6.15), магнитный поток Ф пропорционален току I (если пренебречь насыщением магнитопровода), и в формуле следует положить , где k - постоянный коэффициент. Тогда (6.14) вращающий момент двигателя последовательного возбуждения пропорционален квадрату тока, потребляемого двигателем. Выразим магнитный поток через вращающий момент: , где (6.15) и подставим в приближенное выражение скорости вращения двигателя:        (6.16) Отсюда видно, что для двигателей последовательного возбуждения опасен режим холостого хода, т.к. при уменьшении момента на валу до нуля, скорость вращения неограниченно увеличивается (рис.6.16), двигатель идет «вразнос». Это обстоятельство требует такого сочленения двигателя последовательного возбуждения с рабочей машиной, при котором режим холостого хода исключён. Рабочие характеристики двигателя последовательного возбуждения приведены на рис.6.16. Скорость вращения двигателя последовательного возбуждения можно регулировать либо изменением подводимого напряжения, либо изменением магнитного потока возбуждения за счет шунтирования обмотки возбуждения (рис.6.17). Второй способ более экономичен. Двигатель последовательного возбуждения имеет существенные преимущества, благодаря квадратичной зависимости вращающего момента от тока. Так, например, он развивает больший пусковой момент, что очень важно для электропривода на транспорте (благодаря этому, двигатель способен быстро набирать скорость после остановки). Однако резко выраженная зависимость скорости вращения от нагрузки и опасность «разноса» ограничивают область применения этих двигателей. Указанных недостатков лишены двигатели смешанного возбуждения (рис.6.18). Характеристики этих двигателей являются промежуточными между характеристиками двигателей параллельного и последовательного возбуждения. При согласном включении последовательной и параллельной обмоток возбуждения двигатель смешанного возбуждения имеет больший пусковой момент, по сравнению с двигателем параллельного возбуждения. При встречном включении обмоток возбуждения двигатель приобретает жесткую механическую характеристику. С увеличением нагрузки магнитный поток последовательной обмотки увеличивается и, вычитаясь из потока параллельной обмотки, уменьшает общий поток возбуждения. При этом скорость вращения двигателя не только не уменьшается, а может даже увеличиваться (рис.6.19). И в том, и в другом случае наличие магнитного потока параллельной обмотки исключает режим "разноса" двигателя при снятии нагрузки. |
раздел 6.1. раздел 6.2. раздел 6.3. раздел 6.4. раздел 6.5. раздел 6.6. раздел 6.7. |
||||||
ЦТТиДО |