Тульский государственный педагогический университет им.Л.Н.Толстого
физический факультет кафедра теоретической физики

Анисимов М.М. Физическая электроника

Предисловие

глава 1
глава 2
глава 3
глава 4
глава 5
глава 6
глава 7

Литература

1. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД

1.1. Электрические свойства полупроводников

К полупроводникам относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками. Их удельная электрическая проводимость лежит в пределах от 10-8 до 105 см/м и в отличие от металлов она возрастает с ростом температуры.

Полупроводники представляют собой достаточно многочисленную группу веществ. К ним относятся химические элементы: германий, кремний, бор, углерод, фосфор, сера, мышьяк, селен, серое олово, теллур, йод, некоторые химические соединения и многие органические вещества.

В электронике находят применение ограниченное количество полупроводниковых материалов. Это прежде всего кремний, германий, и арсенид галлия. Ряд веществ, таких как бор, мышьяк, фосфор используются как примеси.

Применяемые в электронике полупроводники имеют весьма совершенную кристаллическую структуру. Их атомы размещены в пространстве в строго периодической последовательности на постоянных расстояниях друг от друга, образуя кристаллическую решетку. Решетка наиболее распространенных в электронике полупроводников - германия и кремния - имеет структуру алмазного типа. В такой решетке каждый атом вещества окружен четырьмя такими же атомами, находящимися в вершинах правильного тетраэда.

Каждый атом, находящийся в кристаллической решетке, электрически нейтрален. Силы, удерживающие атомы в узлах решетки, имеют квантовомеханический характер; они возникают за счет обмена взаимодействующих атомов валентными электронами. Подобная связь атомов носит название ковалентной связи, для ее создания необходима пара электронов.

В германии и кремнии, являющихся четырехвалентными элементами, на наружной оболочке имеется по четыре ковалентные связи с четырьмя ближайшими, окружающими его атомами.

1.2 Носители заряда в полупроводнике.

В рассмотренной идеальной решетке все электроны связаны со своими атомами, поэтому такая структура не должна проводить электрический ток. Однако в полупроводниках (что коренным образом отличает их от диэлектриков) сравнительно небольшие энергетические воздействия, обусловленные нагревом или облучением, могут привести к разрыву некоторых валентных связей в решетке. При этом валентный электрон, оторвавшийся от своего атома, переходит в новое устойчивое состояние, в котором он обладает способностью перемещаться по кристаллической решетке. Такие сорванные с валентных связей подвижные электроны называются электронами проводимости. Они обусловливают электропроводность полупроводника, называемую электронной электропроводностью (рис.1.1).

Минимальная величина энергии DW, которую необходимо сообщить валентному электрону для того, чтобы оторвать его от атома и сделать подвижным, зависит от структуры решетки и, следовательно, является параметром полупроводника.

Энергия электронов, перемещающихся по кристаллу, лежит в некотором диапазоне значений, иначе говоря, электроны занимают целую зону энергетических уровней, называемую зоной проводимости. Энергетические состояния валентных электронов также образуют зону, называемую валентной. Между максимальным уровнем валентной зоны и минимальным уровнем зоны проводимости лежит область энергетическим состояний, в которых электроны не могут находиться; это так называемая запрещенная зона. Ширина запрещенной зоны W определяет энергию, необходимую для освобождения валентного электрона, т.е. энергию ионизации атома полупроводника. Таким образом, с энергетической точки зрения отрыв валентного электрона от атома и превращения его в электрон проводимости соответствуют перебросу электронов из валентной зоны в зону проводимости.

При разрыве валентной связи и уходе электрона из атома в решетку образуется незаполненная связь, которой присущ нескомпенсированный положительный заряд, равный по величине заряду электрона +e. Так как на незаполненную связь легко переходит валентные электроны с соседних связей, чему способствует тепловое движение в кристалле, то место, где отсутствует валентный электрон, (называемое, дыркой), хаотически перемещается по решетке. При наличии внешнего поля дырка также будет двигаться в направлении действия поля, что соответствует переносу положительного заряда, то есть электрическому току.

Этот вид электропроводности полупроводника называют дырочной электропроводностью в отличии от ранее рассмотренной электронной, обусловленной свободными электронами.

Полупроводник, имеющий в узлах решетки только собственные атомы, принято называть собственным проводником; все величины, относящиеся к нему, обозначаются индексом i (от английского слова intrinsic- присущий).

В электронике часто применяются полупроводники, у которых часть атомов основного вещества в узлах кристаллической решетки замещена атомами примеси, то есть атомами другого вещества. Такие полупроводники называются примесными. Для германия и кремния чаще всего используют пятивалентные и трехвалентные примеси. К пятивалентным примесям относятся фосфор, сурьма, мышьяк и др.; к трехвалентным - бор, алюминий, индий, галлий.

При наличии пятивалентной примеси четыре валентных электрона примесного атома совместно с четырьмя электронами соседних атомов образуют ковалентные связи, а пятый валентный электрон оказывается "лишним". Энергия связи его со своим атомом  Wп намного меньше, чем энергия W, необходимая для освобождения валентного электрона.

Благодаря небольшой энергии ионизации Wn, пятый электрон даже при комнатной температуре может быть оторван от своего атома за счет энергии теплового движения. При этом образуется свободный электрон, способный перемещаться по кристаллической решетке, и неподвижный положительный заряд -атом примеси, потерявший этот электрон. Примеси такого вида, отдающие электроны, называются донорными, а кристаллы с подобной примесью - полупроводниками п-типа..

При введении трехвалентной примеси примесный атом отдает три своих валентных электрона для образования ковалентных связей с тремя близлежащими атомами. Связь с четвертым атомом оказывается незаполненной, однако на нее сравнительно легко могут переходить валентные электроны с соседних связей.

При перебросе валентного электрона на незаполненную связь примесный атом с присоединенным лишним электронов образует в решетке неподвижный отрицательный заряд; кроме того, в решетке образуется дырка, способная перемещаться по решетке и обусловливающая дырочную проводимость полупроводника. Примеси такого вида, захватывающие электроны, называются акцепторными, а кристалл с акцепторной примесью - полупроводник р-типа.

1.3. Электронно-дырочный переход

При легировании одной области полупроводника акцепторной примесью, а другой области - донорной, возникает тонкий переходный слой, обладающий особыми свойствами. В этом слое, в результате диффузии носители заряда перемещаются оттуда, где их концентрация больше, туда, где их концентрация меньше. Таким образом, из полупроводника p-типа в полупроводник n-типа диффундируют дырки, а из полупроводника n-типа в полупроводник p-типа диффундируют электроны. При этом, они объединяются с имеющимися в соседних областях основными носителями противоположного знака - рекомбинируют. В этом случае, у границы переходного слоя возникает область обедненная подвижными основными носителями заряда и обладающая высоким сопротивлением - p-n переход. Неподвижные ионы, остающиеся по обе стороны граничного слоя  создают одинаковые по значению, но разные по знаку пространственные объемные заряды: в p-слое - отрицательный, а в n-слое - положительный. Этот двойной электрический слой создает электрическое поле, которое препятствует дальнейшему проникновению носителей заряда и возникает состояние равновесия (рис. 1.2). При подключении источника тока так, что к области p-проводимости присоединен отрицательный полюс источника, а к области n-проводимости - положительный полюс возникает поле, под влиянием которого электроны и дырки будут в большом количестве соответственно отталкиваться в глубь  полупроводников (рис. 1.3).

P-n переход увеличится, его сопротивление возрастет и в цепи полупроводникового диода электрического тока практически не будет. Однако незначительному количеству неосновных носителей зарядов (положительных) из n-области и (отрицательных) из p-области, имеющих большие скорости, удастся проскочить p-n-переход, и в цепи будет протекать весьма небольшой ток, называемый обратным током.

Двойной электрический слой аналогичен конденсатору, в котором роль диэлектрика играет запирающий слой, имеющий значительное сопротивление. Емкость p-n-перехода, возникающая в этом случае носит название барьерной. Эта емкость оказывается нелинейно зависящей от обратного запирающего напряжения. С ростом обратного напряжения толщина запирающего слоя увеличивается, а емкость - уменьшается (рис.1.4).

При изменении полярности источника, подключенного к диоду, электроны n-области и дырки p-области будут взаимно притягиваться и перемещаться к границе этих полупроводников. P-n переход сужается, его сопротивление резко уменьшается, и создаются условия для перехода большого количества электронов из n-области в p-область, а следовательно, для перехода дырок в противоположном направлении. При таком включении полупроводникового диода в цепи появится значительный электрический ток, носящий название прямого тока.

Сила прямого тока в полупроводниках нелинейно зависит от величины приложенного к ним напряжения.

Из описания процесса, происходящего на границе двух полупроводников с различной по знаку проводимостью, следует, что они обладают, как и электронная лампа- диод, односторонней проводимостью. Это значит, что при направлении электрического поля, создаваемого приложенным к полупроводникам прямым напряжением , диод пропускает ток и сопротивление его мало, а при обратном направлении этого поля , создаваемого приложенным к полупроводникам обратным напряжением, сопротивление диода велико, а ток в его цепи весьма мал.

На риc .1.5 показана типичная нелинейная характеристика диода. Вольтамперная характеристика диода описывается соотношением , где I0 - обратный ток p-n перехода, U приложенное напряжение, j - температурный потенциал, при 300К j =26мВ . Для большей наглядности кривая прямого тока (правая часть графика) и кривая обратного тока (левая часть графика) построены в различных масштабах. Похожими свойствами обладает и контакт полупроводника с металлом, использующийся в диодах Шотки.

раздел 1.1.
раздел 1.2.
раздел 1.3.

ЦТТиДО