Лабораторная работа № 10 (компьютерная) Моделирование броуновского движения¹

Выполнил студент _	
Факультет	курс группа
Проверил	
Показания сняты	
Зачтено	

Цель работы: Изучение движения броуновской частицы, определение постоянной Больцмана.

Оборудование: компьютер с ОС WINDOWS (XP-10), программный продукт «Brown.exe», Microsoft Excel версии 2003-2016 и старше.

🎉 Броуновское движение		Barrow Pro				
Меню Справка						
О программе С чего начать	3a	дание начальных услов	вий:			
Температура: 500	K	Вязкость среды:	1e-3	Па-с	Масштаб: 5	
Радиус частицы: 0,35	MKM	Время регистрации:	5	с	Количество перемещений: 129	
	Рабочее поле					
Построить						
Очистить		٠		AK		
Запись в файл						
Выход						
×		III.				

Теоретическое введение, контрольные вопросы, литература (см. лабораторная работа №10) на странице лабораторного практикума URL: https://tsput.ru/res/fizika/for_phys_9.htm.

¹ Работа подготовлена в рамках выполнения ВКР студенткой группы 5 «Д» факультета МФиИ Лудановой Александрой Александровной. Научный руководитель Грибков А. И. 2009 год. С изменениями 2022 г.

Порядок выполнения работы

- 1. Подготовьте компьютер к работе: включите в сеть; введите пароль.
- 2. Скачайте архив с программой со страницы виртуального лабораторного практикума. URL: https://tsput.ru/res/fizika/for_phys_10.htm.
- 3. Распакуйте содержимое архива в любую пустую папку.
- 4. Запустите исполняемый файл «Brown.exe».
- 5. Рассмотрите составляющие интерфейса модели. Обратите внимание на активные элементы управления работой модели. (По ячейкам ввода данных можно перемещаться нажатием "Enter" на клавиатуре).
- 6. При вводе значения в окно редактирования «радиус частицы» используйте запятую. Размер броуновской частицы должен быть во много раз меньше размера поля, в котором она движется.
- 7. Пронаблюдайте движение броуновской частицы с установленными параметрами. Для этого:
 - 7.1. нажмите на кнопку «Построить»;
 - 7.2. нажмите кнопку «Стоп», когда количество перемещений станет равным 10;
 - 7.3. зарисуйте траекторию движения броуновской частицы в тетрадь или сделайте скриншот окна программы.
- 8. Проведите моделирование броуновского движения:
 - 8.1. пылинки в воздухе при трёх различных температурах;
 - 8.2. броуновской частицы в жидкости при трёх различных температурах.

(Необходимые параметры взять из справочника «Таблицы физических величин». Количество перемещений броуновской частицы уточните у преподавателя. Давление воздуха принять равным нормальному атмосферному давлению.)

- 9. Результаты каждого эксперимента сохраните в отдельных файлах. Для этого:
 - 9.1. убедитесь в том, что количество перемещений равно заданному преподавателем значению;
 - 9.2. нажмите кнопку «Стоп»;
 - 9.3. нажмите кнопку «Записать в файл». В раскрывшемся окне выберите <буква диска>:\Work\..\<ваша папка>\<Имя файла>. Например, назовите «Пылинка_373К», или «Частица_273К», где слово указывает на вид частицы, а число на температуру в кельвинах.
 - 9.4. нажмите «Сохранить».
- 10. Откройте папку, в которой вы сохранили результаты с помощью Microsoft Office Word или Текстового редактора WordPad(MFC) в зависимости от

версии операционной системы компьютера. Перенесите данные из файла в таблицу Microsoft Office Excel. r_i^2 , MKM²

Ν

11. Исходя из формулы

$$\left\langle r^{2}\right\rangle = \frac{kT}{\pi\eta a}\Delta t,$$

Рассчитайте постоянную Больцмана. Смысл величин, входящих в формулу, смотрите описании реальной В лабораторной работы. URL: https://tsput.ru/res/fizika/for_phys_9.htm.

- 12. Сравните получившееся значение С табличным.
- 13. Повторите расчёты для других экспериментов.
- расчётов 14. Сохраните результаты В тетрадях или файлах для каждого из экспериментов.
- 15. Выполните для одного из экспериментов оценку погрешностей.

$$k = (___\pm__)\cdot 10$$
 Дж/К.
 $\mathcal{E}_k = ___\%$

1.
.

2.
.

3.
.

4.
.

5.
.

6.
.

7.
.

8.
.

9.
.

10.
.

$$\alpha = 95\%$$
.

 $N = t_{\alpha N} = t_{\alpha N}$

ri, MKM

- 17. Проведите графическое сравнение результатов
- 18. Сформулируйте выводы.