Университет XXI века: научное измерение

Научная конференция научно-педагогических работников, аспирантов, магистрантов ТГПУ им. Л. Н. Толстого 166 9. James J. T. 2000. Polydimethylcyclosiloxanes. In Spacecraft Maximum Al- lowable Concentrations For Selected Airborne Contaminants, ed. US National Re- search Council, 151_174. Washington, DC: National Academy Press, (n.d.). 10. Graiver D., Farminer K. W., Narayan R. A Review of the Fate and Effects of Silicones in the Environment // J. Polym. Environ. – 11 (2003). – P. 129–136. 11. Xu S. Fate of Cyclic Methylsiloxanes in Soils. 1. The Degradation Pathway, Environ. Sci. Technol. – 33 (1999). P. 603–608. 12. Traina S. J., Fendinger N. J., McAvoy D. C., Kerr K. M., Gupta S. Fate of Polydimethylsilicone in Biosolids-Amended Field Plots // J. Environ. Qual. – 31 (2002). – P. 247–255. 13. Parker W. J., Shi J., Fendinger N. J., Monteith H. D., Chandra G. Pilot plant study to assess the fate of two volatile methyl siloxane compounds during municipal wastewater treatment // Environ. Toxicol. Chem. – 18 (1999). – P. 172–181. 14. Kochetkov A., Smith J. S., Ravikrishna R., Valsaraj K. T., Thibodeaux L. J., Air-water partition constants for volatile methyl siloxanes // Environ. Toxicol. Chem. – 20 (2001). – P. 2184–2188. 15. Dewil R., Appels L., Baeyens J. Energy use of biogas hampered by the pres- ence of siloxanes // Energy Convers. Manag. – 47 (2006). – P. 1711–1722. 16. Grümping R., Michalke K., Hirner A. V., Hensel R. Microbial degradation of octamethylcyclotetrasiloxane // Appl. Environ. Microbiol. – 65 (1999). – P. 2276–2278. – URL: http://www.ncbi.nlm.nih.gov/pubmed/10224038 (accessed January 9, 2019). 17. Soreanu G., Falletta P., Land M. B., Edmonson K., Seto P. Abiotic and bio- tic mitigation of volatile methyl siloxanes in anaerobic gas-phase biomatrices // Envi- ron. Eng. Manag. J. – 8 (2009). – P. 1235–1240. – URL: http://eemj.eu/index.php/EEMJ/ article/view/2663 (accessed January 9, 2019). 18. Popat S. C., Deshusses M. A. Biological Removal of Siloxanes from Land- fill and Digester Gases: Opportunities and Challenges // Environ. Sci. Technol. – 42 (2008). – P. 8510–8515. 19. Buch R. R., Lane T. H., Annelin R. B., Frye C. L. Photolytic oxidative de- methylation of aqueous dimethylsiloxanols // Environ. Toxicol. Chem. – 3 (1984). – P. 215–222. 20. Lehmann R. G., Miller J. R., Collins H. P. Microbial Degradation of Dime- thylsilanediol in Soil, Water. Air. Soil Pollut. – 106 (1998). – P. 111–122. 21. European Commission. 2003. Integrated Pollution Prevention and Control Reference Document on Best Available Techniques in Common Waste Water and Waste Gas Treatment // Management Systems in the Chemical Sector. – URL: http://eippcb.jrc.es/reference/cww.html (2010/0, (n.d.). 22. Zimmermann C. G. On the kinetics of photodegradation in transparent sili- cones // J. Appl. Phys. – 103 (2008) 083547. 23. Atkinson R. Kinetics of the gas-phase reactions of a series of organosilicon compounds with hydroxyl and nitrate(NO3) radicals and ozone at 297 .+-. 2 K, Envi- ron. Sci. Technol. – 25 (1991). – P. 863–866. 24. Ouyang M., Yuan C., Muisener R. J., Boulares A., Koberstein J. T. Conver- sion of Some Siloxane Polymers to Silicon Oxide by UV / Ozone Photochemical Processes, Chem. Mater. – 12 (2000). – P. 1591–1596.

RkJQdWJsaXNoZXIy ODQ5NTQ=